

Final Term Exam
Date: 3/6/2017

Course: Mathematics 2 - B

Duration: 3 hours

Answer following Questions:

Question (1) (14 points)

- (a) The Bessel equation of order zero is $x^2y'' + xy' + x^2y = 0$ show that the roots of indicial equation are $s_1 = s_2 = 0$ and one solution for x > 0 is $J_0 = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{x}{2}\right)^{2n}$.
- (b) Show that $\int_{0}^{\pi/2} J_0(x\cos\theta)\cos\theta d\theta = \frac{\sin x}{x}$

Question (2) (14 points)

- (a)Prove that $\int_{0}^{\pi/2} \cos^{2m-1}\theta \sin^{2n-1}\theta \ d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)} \text{ where } \Gamma(n) \text{ is the Gamma function}$
- (b)Evaluate $\int_{0}^{2} x \sqrt[3]{8-x^3} dx$

Question (3) (14 points)

- (a) Evaluate $\int_{-1}^{1} x P_m(x) P_{m-1}(x) dx$ where P_m is Legendre polynomial of degree m.
- (b) Show that the function $u = e^x \sin y$ is harmonic function and find the function v such that f = u + iv satisfy Cauchy-Riemann equations.

Question (4) (24 points)

- (a) Solve the differential equation y'' + 2y' + 2y = 0 given that y(0) = 0, y'(0) = 1
- (b) Find Laplace transform of the periodic function $f(t) = \begin{cases} 1 & 0 < t < a \\ 0 & a < t < 2a \end{cases}$ period 2a
- (c) Find inverse Laplace for $F(s) = \frac{1}{(s+1)^4} + \frac{s-3}{s^2 6s + 15}$

Question (5) (14 points)

- (a) Evaluate $\int_{(3,0)}^{(-3,0)} \frac{(2z-3)}{z} dz$ on the circle |z|=3.
- (b) Find the complex integration $\int_C \frac{(z^2 + 3z)}{(z 2)} dz$, on the circle |z| = 5.